Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Diaquabis(5-carboxy-2-propyl-1*H*imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)magnesium(II) 3.5-hydrate

Xiang-Yun Liu* and Li-Hua Liu

Department of Chemistry and Chemical Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, People's Republic of China Correspondence e-mail: tianlin1288@163.com

Received 30 January 2010; accepted 11 February 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.058; wR factor = 0.178; data-to-parameter ratio = 11.4.

In the title complex, $[Mg(C_8H_9N_2O_4)_2(H_2O)_2] \cdot 3.5H_2O$, the Mg^{II} atom is six-coordinated by two *N*,*O*-bidentate 5-carboxy-2-propyl-1*H*-imidazole-4-carboxylate ligands and two water molecules, forming a distorted octahedral environment. The complex molecules are linked into a three-dimensional network by N-H···O and O-H···O hydrogen-bonding interactions. The propyl groups are disordered over two sites, with site occupancies of 0.755 (7):0.245 (7) and 0.556 (13):0.444 (13).

Related literature

For related structures, see: Sengupta *et al.* (2001); Song *et al.* (2010); Wang *et al.* (2004); Yan *et al.* (2010).

Experimental

Crystal data

$$\begin{split} & [\mathrm{Mg}(\mathrm{C_8H_9N_2O_4})_2(\mathrm{H_2O})_2]\cdot 3.5\mathrm{H_2O} \\ & M_r = 517.74 \\ & \mathrm{Triclinic}, \ P\overline{1} \\ & a = 10.516 \ (1) \ \text{\AA} \\ & b = 10.5332 \ (11) \ \text{\AA} \\ & c = 11.3989 \ (13) \ \text{\AA} \\ & \alpha = 83.288 \ (1)^\circ \\ & \beta = 81.783 \ (1)^\circ \end{split}$$

 $\begin{array}{l} \gamma = 86.458 \ (2)^{\circ} \\ V = 1239.8 \ (2) \ {\rm \AA}^3 \\ Z = 2 \\ {\rm Mo} \ {\rm K} \alpha \ {\rm radiation} \\ \mu = 0.14 \ {\rm mm}^{-1} \\ T = 298 \ {\rm K} \\ 0.48 \ \times \ 0.38 \ \times \ 0.35 \ {\rm mm} \end{array}$

 $R_{\rm int} = 0.028$

6478 measured reflections

4321 independent reflections

2780 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.935, T_{\max} = 0.952$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 & 378 \text{ parameters} \\ wR(F^2) &= 0.178 & \text{H-atom parameters constrained} \\ S &= 1.00 & \Delta\rho_{\text{max}} = 0.58 \text{ e } \text{\AA}^{-3} \\ 4321 \text{ reflections} & \Delta\rho_{\text{min}} = -0.31 \text{ e } \text{\AA}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2−H2···O12	0.86	1.89	2.745 (4)	170
N4-H4···O13	0.86	1.91	2.737 (4)	162
O3−H3···O2	0.82	1.70	2.511 (3)	173
O7−H7···O6	0.82	1.65	2.461 (3)	172
$O9-H9C\cdots O8^{i}$	0.85	1.88	2.732 (3)	177
O9−H9D···O11 ⁱⁱ	0.85	1.83	2.678 (4)	176
$O10-H10C \cdot \cdot \cdot O4^{iii}$	0.85	1.94	2.787 (3)	174
$O10-H10D\cdots O8^{iv}$	0.85	2.06	2.905 (3)	174
$O11 - H11C \cdot \cdot \cdot O2^{v}$	0.85	1.95	2.794 (3)	172
$O11 - H11D \cdots O5^{vi}$	0.85	2.05	2.893 (3)	172
$O12-H12C \cdot \cdot \cdot O7^{vi}$	0.85	2.05	2.888 (4)	167
$O12-H12D\cdots O14^{v}$	0.85	1.84	2.672 (6)	167
O13−H13C···O14	0.85	1.85	2.643 (6)	156
$O13-H13D\cdots O11^{vii}$	0.85	2.07	2.869 (5)	156
$O14-H14G\cdots O1^{viii}$	0.85	2.00	2.816 (5)	162
$O14-H14H\cdots O1^{ix}$	0.85	1.98	2.799 (5)	162

Symmetry codes: (i) -x, -y + 1, -z + 2; (ii) x, y - 1, z + 1; (iii) -x + 1, -y, -z + 1; (iv) x, y - 1, z; (v) -x + 1, -y + 1, -z + 1; (vi) -x, -y + 1, -z + 1; (vii) x, y, z + 1; (viii) x, y + 1, z; (ix) -x + 1, -y + 1, -z + 2.

Data collection: *SMART* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *SHELXTL*.

The authors thank Henan University of Urban Construction.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2281).

References

Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Bruker (2007). *SMART* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.

Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). *Polyhedron*, **20**, 3349–3354.

- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.
- Wang, C.-F., Gao, E.-Q., Zheng, H. & Yan, C.-H. (2004). Chem. Commun. pp. 720–721.
- Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.

Acta Cryst. (2010). E66, m305 [doi:10.1107/S1600536810005684]

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4)magnesium(II) 3.5-hydrate X.-Y. Liu and L.-H. Liu

Comment

Imidazole-4,5-dicarboxylate ligands with efficient N,*O*-donors have been been widely used to obtain new complexes with excellent properties (Sengupta *et al.*, 2001; Song *et al.*,2010; Wang *et al.*, 2004; Yan *et al.*, 2010). Bearing this in mind, we introduced Mg(CH₃CO₂)₂ and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid into reaction so as to obtain a new Mg^{II} complex.

As illustrated in Fig. 1, the title complex molecule contains one Mg^{II} ion, two mono-deprotonated 2-propyl-1*H*-imidazole-4,5-dicarboxylate ligands, two coordinated water molecules and three and half uncoordinated water molecules. The Mg^{II} atom is six-coordinated by two N,*O*-bidentate ligands and two water molecules in a slightly distorted octahedral environment. Both ligands coordinate through N atoms and carboxylate O atoms in a bidentate chelate fashion, forming two five-membered Mg, O, C, C, N rings. Uncoordinated solvent water molecules are located in cavities of the three-dimensional network, participating in N—H…O and O—H…O hydrogen bonds, which contribute to the stability of the network. The two propyl residues are disordered over two sites, with site occupancies of 0.755 (7):0.245 (7) and 0.556 (13):0.444 (13).

Experimental

The title compound was prepared by the hydrothermal reaction of $Mg(CH_3CO_2)_2$ (0.5 mmol, 0.07 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid (0.5 mmol, 0.99 g) in 15 ml of H₂O solution. The reaction was performed in a Teflon-lined autoclave (20 ml), which was heated at 433 K for 2 d. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

C- and N-bound H atoms were placed at calculated positions and were treated as riding atoms, with C—H = 0.97 (CH₂) and 0.96 (CH₃) Å and N—H = 0.86 Å and with $U_{iso}(H) = 1.2(1.5 \text{ for methyl})U_{eq}(C,N)$. The water H atoms were located in a difference map and refined as riding, with O—H = 0.85 Å and $U_{iso}(H) = 1.2U_{eq}(O)$. H atoms of carboxyl groups were located in a difference map and refined as riding, with O—H = 0.82 Å and $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Fig. 2. A view of the three-dimensional network constructed by N—H…O and O—H…O hydrogen bonding interactions (dashed lines).

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) magnesium(II) 3.5-hydrate

Crystal data

$[M_{\alpha}(C_{\alpha}H_{\alpha}N_{\alpha}O_{\alpha})_{\alpha}(H_{\alpha}O_{\alpha})_{\alpha}]_{2}$ 5HaO	7 – 2
$[Mg(Cg119N_2O_4)_2(11_2O_2)_2]^{-5.511_2O}$	L = 2
$M_r = 517.74$	F(000) = 546
Triclinic, P1	$D_{\rm x} = 1.387 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 10.516(1) Å	Cell parameters from 2051 reflections
b = 10.5332 (11) Å	$\theta = 2.5 - 23.9^{\circ}$
c = 11.3989 (13) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\alpha = 83.288 \ (1)^{\circ}$	T = 298 K
$\beta = 81.783 \ (1)^{\circ}$	Block, colorless
$\gamma = 86.458 \ (2)^{\circ}$	$0.48 \times 0.38 \times 0.35 \text{ mm}$
$V = 1239.8 (2) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD diffractometer	4321 independent reflections
Radiation source: fine-focus sealed tube	2780 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 12$
$T_{\min} = 0.935, T_{\max} = 0.952$	$k = -7 \rightarrow 12$
6478 measured reflections	$l = -12 \rightarrow 13$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.058$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.178$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0865P)^{2} + 0.6255P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4321 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
378 parameters	$\Delta \rho_{max} = 0.58 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.31 \text{ e} \text{ Å}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2	?)
---	----

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Mg1	0.20602 (10)	0.14342 (10)	0.81297 (9)	0.0417 (3)	
N1	0.2821 (2)	0.1678 (3)	0.6227 (2)	0.0429 (6)	
N2	0.3556 (3)	0.1891 (3)	0.4316 (2)	0.0518 (7)	
H2	0.3565	0.2023	0.3556	0.062*	
N3	0.2165 (2)	0.3506 (2)	0.8307 (2)	0.0406 (6)	
N4	0.2228 (2)	0.5498 (3)	0.8701 (2)	0.0455 (7)	
H4	0.2525	0.6192	0.8859	0.055*	
O1	0.4034 (2)	0.1060 (2)	0.81403 (18)	0.0481 (6)	
O2	0.5972 (2)	0.1009 (3)	0.7049 (2)	0.0601 (7)	
03	0.6855 (2)	0.1268 (3)	0.4872 (2)	0.0639 (7)	
Н3	0.6563	0.1120	0.5578	0.096*	
O4	0.6100 (2)	0.1666 (2)	0.3161 (2)	0.0652 (7)	
O5	0.0167 (2)	0.2175 (2)	0.7964 (2)	0.0483 (6)	
O6	-0.1219 (2)	0.3840 (2)	0.8141 (2)	0.0602 (7)	
07	-0.1173 (2)	0.6067 (2)	0.8584 (2)	0.0588 (7)	
H7	-0.1178	0.5304	0.8504	0.088*	
08	0.0222 (2)	0.7397 (2)	0.8968 (2)	0.0580 (7)	
O9	0.1655 (3)	0.1075 (2)	0.9919 (2)	0.0653 (8)	
H9C	0.1071	0.1529	1.0290	0.078*	
H9D	0.1832	0.0418	1.0385	0.078*	
O10	0.1704 (3)	-0.0415 (2)	0.7915 (2)	0.0674 (8)	
H10C	0.2394	-0.0744	0.7569	0.081*	
H10D	0.1228	-0.1018	0.8241	0.081*	
011	0.2291 (3)	0.8974 (3)	0.1314 (3)	0.0858 (10)	
H11C	0.2762	0.8940	0.1864	0.103*	
H11D	0.1592	0.8619	0.1597	0.103*	
O12	0.3299 (3)	0.2189 (4)	0.1936 (3)	0.1094 (13)	
H12C	0.2705	0.2676	0.1671	0.131*	
H12D	0.3729	0.1839	0.1359	0.131*	
O13	0.3434 (3)	0.7359 (3)	0.9551 (3)	0.1053 (12)	

H13C	0.4103	0.7795	0.9419	0.126*	
H13D	0.2914	0.7684	1.0088	0.126*	
O14	0.5130 (5)	0.9089 (5)	0.9622 (4)	0.0584 (13)	0.50
H14G	0.4816	0.9784	0.9298	0.070*	0.50
H14H	0.5333	0.9220	1.0292	0.070*	0.50
C1	0.4763 (3)	0.1168 (3)	0.7168 (3)	0.0438 (8)	
C2	0.4130 (3)	0.1509 (3)	0.6087 (3)	0.0382 (7)	
C3	0.4614 (3)	0.1646 (3)	0.4896 (3)	0.0430 (8)	
C4	0.5913 (3)	0.1533 (3)	0.4242 (3)	0.0482 (8)	
C5	0.2496 (3)	0.1891 (4)	0.5137 (3)	0.0563 (10)	
C6	0.1138 (11)	0.1962 (10)	0.4864 (9)	0.064 (2)	0.755 (7)
H6A	0.0598	0.1492	0.5511	0.077*	0.755 (7)
H6B	0.1108	0.1566	0.4142	0.077*	0.755 (7)
C7	0.0631 (7)	0.3333 (8)	0.4701 (6)	0.082 (2)	0.755 (7)
H7A	0.1103	0.3778	0.3995	0.099*	0.755 (7)
H7B	0.0753	0.3760	0.5383	0.099*	0.755 (7)
C8	-0.0804 (6)	0.3375 (8)	0.4573 (7)	0.111 (3)	0.755 (7)
H8A	-0.0927	0.2905	0.3929	0.166*	0.755 (7)
H8B	-0.1106	0.4248	0.4410	0.166*	0.755 (7)
H8C	-0.1278	0.2999	0.5301	0.166*	0.755 (7)
C6'	0.129 (3)	0.259 (3)	0.478 (3)	0.061 (7)	0.245 (7)
H6'1	0.1463	0.3122	0.4029	0.073*	0.245 (7)
H6'2	0.0875	0.3102	0.5389	0.073*	0.245 (7)
C7'	0.047 (2)	0.145 (2)	0.4661 (19)	0.081 (6)	0.245 (7)
H7'1	0.0451	0.0872	0.5389	0.097*	0.245 (7)
H7'2	-0.0401	0.1781	0.4606	0.097*	0.245 (7)
C8'	0.091 (2)	0.069 (2)	0.361 (2)	0.106 (8)	0.245 (7)
H8'1	0.0665	0.1152	0.2899	0.158*	0.245 (7)
H8'2	0.0511	-0.0122	0.3755	0.158*	0.245 (7)
H8'3	0.1827	0.0549	0.3526	0.158*	0.245 (7)
С9	-0.0087 (3)	0.3316 (3)	0.8131 (3)	0.0440 (8)	
C10	0.0964 (3)	0.4090 (3)	0.8322 (3)	0.0394 (7)	
C11	0.0983 (3)	0.5332 (3)	0.8570 (3)	0.0414 (7)	
C12	-0.0035 (3)	0.6349 (3)	0.8720 (3)	0.0458 (8)	
C13	0.2919 (3)	0.4388 (3)	0.8542 (3)	0.0461 (8)	
C14	0.4291 (18)	0.4147 (17)	0.8779 (12)	0.053 (3)	0.556 (13)
H14A	0.4549	0.3255	0.8714	0.064*	0.556 (13)
H14B	0.4359	0.4324	0.9584	0.064*	0.556 (13)
C15	0.5185 (8)	0.5000 (8)	0.7884 (11)	0.072 (3)	0.556 (13)
H15A	0.4907	0.5889	0.7943	0.086*	0.556 (13)
H15B	0.6050	0.4883	0.8094	0.086*	0.556 (13)
C16	0.5214 (18)	0.472 (2)	0.6607 (18)	0.099 (7)	0.556 (13)
H16A	0.5381	0.3817	0.6561	0.149*	0.556 (13)
H16B	0.5879	0.5184	0.6104	0.149*	0.556 (13)
H16C	0.4398	0.4973	0.6346	0.149*	0.556 (13)
C14'	0.434 (2)	0.435 (2)	0.8282 (14)	0.055 (4)	0.444 (13)
H14C	0.4671	0.3481	0.8467	0.066*	0.444 (13)
H14D	0.4674	0.4882	0.8799	0.066*	0.444 (13)
C15'	0.484 (2)	0.481 (2)	0.6993 (19)	0.073 (6)	0.444 (13)
		()	x - /	< / <	(-)

H15C	0.4440	0.4348	0.640	57	0.087*	0.444 (13)
H15D	0.4614	0.5711	0.683	31	0.087*	0.444 (13)
C16'	0.6296 (14)	0.4600 (12)	0.673	37 (12)	0.097 (5)	0.444 (13)
H16D	0.6694	0.4989	0.730)4	0.146*	0.444 (13)
H16E	0.6594	0.4979	0.594	46	0.146*	0.444 (13)
H16F	0.6517	0.3699	0.679	99	0.146*	0.444 (13)
Atomic disple	acement parameters	$(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mg1	0.0463 (6)	0.0375 (6)	0.0393 (6)	0.0013 (5)	0.0014 (5)	-0.0057(5)
N1	0.0440 (16)	0.0449 (16)	0.0392 (15)	0.0004 (13)	-0.0037 (12)	-0.0055 (12)
N2	0.0598 (18)	0.0601 (19)	0.0335 (14)	0.0063 (15)	-0.0045 (13)	-0.0041 (13)
N3	0.0397 (15)	0.0359 (15)	0.0455 (15)	0.0011 (12)	-0.0020 (11)	-0.0077 (12)
N4	0.0455 (16)	0.0369 (15)	0.0544 (17)	-0.0044 (13) 0.0001 (12)	-0.0136 (13)
01	0.0561 (14)	0.0522 (14)	0.0338 (12)	0.0090 (11)	-0.0037 (10)	-0.0042(10)
02	0.0467 (15)	0.0847 (19)	0.0490 (14)	0.0051 (13)	-0.0072(11)	-0.0112 (13)
03	0.0505 (15)	0.081 (2)	0.0572 (15)	-0.0037 (14) 0.0082 (12)	-0.0142 (15)
04	0.0756 (18)	0.0645 (17)	0.0461 (15)	0.0060 (14)	0.0160 (12)	-0.0019 (12)
05	0.0453 (13)	0.0449 (14)	0.0563 (14)	-0.0062 (11	-0.0051(10)	-0.0118 (11)
06	0.0408 (14)	0.0581 (16)	0.0834 (18)	0.0030 (12)	-0.0140 (12)	-0.0103 (14)
07	0.0511 (15)	0.0474 (15)	0.0758 (17)	0.0120 (12)	-0.0069 (12)	-0.0071 (14)
08	0.0629 (16)	0.0412 (14)	0.0641 (16)	0.0011 (12)	0.0120 (12)	-0.0083 (12)
09	0.0830 (18)	0.0568 (16)	0.0445 (14)	0.0250 (14)	0.0133 (12)	0.0008 (12)
O10	0.0755 (18)	0.0428 (15)	0.0765 (17)	-0.0136 (13) 0.0259 (14)	-0.0151 (13)
011	0.087 (2)	0.078 (2)	0.098 (2)	-0.0325 (17	-0.0461(17)	0.0259 (17)
012	0.131 (3)	0.138 (3)	0.0634 (19)	0.048 (2)	-0.0415 (19)	-0.021(2)
013	0.113 (3)	0.090 (3)	0.129 (3)	0.003 (2)	-0.041 (2)	-0.056 (2)
O14	0.072 (3)	0.060 (3)	0.045 (3)	0.006 (3)	-0.017 (2)	-0.006 (2)
C1	0.047 (2)	0.0414 (19)	0.0438 (19)	0.0021 (15)	-0.0063 (15)	-0.0119 (15)
C2	0.0417 (18)	0.0346 (17)	0.0378 (17)	0.0005 (14)	-0.0015 (13)	-0.0072 (13)
C3	0.0495 (19)	0.0372 (18)	0.0415 (18)	-0.0001 (15) -0.0029 (15)	-0.0064 (14)
C4	0.056 (2)	0.0393 (19)	0.046 (2)	-0.0010 (16) 0.0065 (17)	-0.0071 (15)
C5	0.055 (2)	0.071 (3)	0.044 (2)	0.0056 (19)	-0.0095 (17)	-0.0099 (18)
C6	0.063 (5)	0.076 (7)	0.058 (4)	-0.007 (6)	-0.018 (3)	-0.006 (5)
C7	0.072 (4)	0.091 (5)	0.083 (4)	0.003 (4)	-0.017 (3)	0.003 (4)
C8	0.068 (4)	0.132 (7)	0.126 (6)	0.010 (4)	-0.023 (4)	0.013 (5)
C6'	0.060 (15)	0.064 (18)	0.057 (12)	0.005 (18)	-0.014 (10)	-0.002 (14)
C7'	0.072 (14)	0.095 (17)	0.075 (13)	-0.001 (12)	-0.015 (11)	-0.001 (12)
C8'	0.092 (15)	0.117 (19)	0.108 (17)	-0.004 (14)	-0.025 (13)	0.001 (15)
C9	0.0417 (19)	0.045 (2)	0.0439 (18)	-0.0009 (16	-0.0028(14)	-0.0023 (15)
C10	0.0393 (17)	0.0366 (18)	0.0393 (17)	0.0017 (14)	0.0013 (13)	-0.0020 (14)
C11	0.0438 (18)	0.0407 (19)	0.0368 (17)	0.0000 (15)	0.0004 (13)	-0.0009 (14)
C12	0.055 (2)	0.041 (2)	0.0374 (18)	0.0005 (16)	0.0043 (15)	0.0007 (15)
C13	0.0423 (18)	0.0410 (19)	0.055 (2)	-0.0019 (15) 0.0004 (15)	-0.0118 (16)
C14	0.045 (5)	0.055 (7)	0.062 (8)	-0.005 (4)	-0.010 (7)	-0.015 (7)
C15	0.050 (5)	0.064 (5)	0.099 (8)	-0.012 (4)	0.002 (5)	-0.015 (5)
C16	0.091 (19)	0.097 (10)	0.098 (13)	-0.009 (10)	0.031 (9)	-0.015 (8)
	· · /	× /	· /	()	× /	· · ·

C14'	0.048 (6)	0.049 (8)	0.068 (11)	-0.004 (6)	0.000 (10)	-0.016 (9)		
C15'	0.051 (10)	0.070 (8)	0.089 (17)	0.006 (7)	0.017 (10)	-0.015 (10)		
C16'	0.060 (9)	0.090 (9)	0.133 (11)	0.005 (6)	0.003 (7)	0.003 (7)		
Geometric parameters (Å, °)								
Mg1—O9		2.019 (2)	C5—	C6'	1.5	1 (3)		
Mg1010		2.055 (3)	С6—	C7	1.5	08 (11)		
Mg1—O1		2.090 (2)	С6—	H6A	0.9	700		
Mg1—O5		2.118 (2)	С6—	H6B	0.9	700		
Mg1—N1		2.193 (3)	С7—	C8	1.5	35 (9)		
Mg1—N3		2.226 (3)	С7—	H7A	0.9	700		
N1—C5		1.325 (4)	С7—	H7B	0.9	700		
N1—C2		1.365 (4)	C8—	H8A	0.9	600		
N2—C5		1.349 (4)	C8—	H8B	0.9	600		
N2—C3		1.370 (4)	C8—	H8C	0.9	600		
N2—H2		0.8600	C6'—	-C7'	1.5	4 (3)		
N3—C13		1.332 (4)	C6'—	-H6'1	0.9	700		
N3—C10		1.369 (4)	C6'—	-H6'2	0.9	700		
N4—C13		1.354 (4)	С7'—	-C8'	1.5	2 (3)		
N4—C11		1.363 (4)	С7'—	-H7'1	0.9	700		
N4—H4		0.8600	С7'—	-H7'2	0.9	700		
O1—C1		1.252 (4)	C8'—	-H8'1	0.9	600		
O2—C1		1.262 (4)	C8'—	-H8'2	0.9	600		
O3—C4		1.303 (4)	C8'—	-H8'3	0.9	600		
O3—H3		0.8200	С9—	C10	1.4	67 (5)		
O4—C4		1.213 (4)	C10–	C11	1.3	72 (4)		
О5—С9		1.246 (4)	C11–	C12	1.4	74 (5)		
O6—C9		1.280 (4)	C13–	C14'	1.4	8 (2)		
O7—C12		1.285 (4)	C13–	C14	1.5	06 (19)		
O7—H7		0.8200	C14–	C15	1.5	33 (17)		
O8—C12		1.227 (4)	C14-	-H14A	0.9	700		
О9—Н9С		0.8500	C14–	-H14B	0.9	700		
O9—H9D		0.8500	C15–	C16	1.5	2 (2)		
O10—H10C		0.8500	C15–	-H15A	0.9	700		
O10—H10D		0.8500	C15–	-H15B	0.9	700		
O11—H11C		0.8501	C16–	-H16A	0.9	600		
O11—H11D		0.8500	C16–	-H16B	0.9	600		
O12—H12C		0.8499	C16–	-H16C	0.9	600		
O12—H12D		0.8499	C14'-	C15'	1.5	2 (2)		
O13—H13C		0.8500	C14'-	-H14C	0.9	700		
O13—H13D		0.8499	C14'-	-H14D	0.9	700		
O14—H14G		0.8500	C15'-	C16'	1.5	2 (2)		
O14—H14H		0.8500	C15'-	-H15C	0.9	700		
C1—C2		1.481 (4)	C15'-	-H15D	0.9	700		
C2—C3		1.374 (4)	C16'-	-H16D	0.9	600		
C3—C4		1.465 (5)	C16'-	—H16E	0.9	600		
С5—С6		1.500 (11)	C16'-	—H16F	0.9	600		
O9—Mg1—O10		91.24 (11)	C8—	С7—Н7В	109	9.7		

O9—Mg1—O1	93.24 (10)	H7A—C7—H7B	108.2
O10-Mg1-O1	94.26 (11)	C5—C6'—C7'	101.1 (19)
O9—Mg1—O5	92.42 (10)	С5—С6'—Н6'1	111.6
O10-Mg1-O5	95.35 (11)	С7'—С6'—Н6'1	111.6
O1—Mg1—O5	168.73 (10)	С5—С6'—Н6'2	111.6
O9—Mg1—N1	170.33 (11)	С7'—С6'—Н6'2	111.6
O10-Mg1-N1	87.42 (10)	H6'1—C6'—H6'2	109.4
O1—Mg1—N1	77.33 (9)	C8'—C7'—C6'	117 (2)
O5—Mg1—N1	97.24 (10)	C8'—C7'—H7'1	108.1
O9—Mg1—N3	89.86 (10)	C6'—C7'—H7'1	108.1
O10-Mg1-N3	171.92 (12)	C8'—C7'—H7'2	108.1
O1—Mg1—N3	93.67 (10)	C6'—C7'—H7'2	108.1
O5—Mg1—N3	76.60 (9)	H7'1—C7'—H7'2	107.3
N1—Mg1—N3	92.82 (10)	C7'—C8'—H8'1	109.5
C5—N1—C2	106.2 (3)	C7'—C8'—H8'2	109.5
C5—N1—Mg1	144.1 (2)	H8'1—C8'—H8'2	109.5
C2—N1—Mg1	109.73 (19)	С7'—С8'—Н8'3	109.5
C5—N2—C3	108.5 (3)	H8'1—C8'—H8'3	109.5
C5—N2—H2	125.7	H8'2—C8'—H8'3	109.5
C3—N2—H2	125.7	05—C9—O6	123.0 (3)
C13—N3—C10	105.7 (3)	O5—C9—C10	118.2 (3)
C13—N3—Mg1	144.0 (2)	O6—C9—C10	118.8 (3)
C10—N3—Mg1	109.6 (2)	N3—C10—C11	110.4 (3)
C13—N4—C11	108.7 (3)	N3—C10—C9	117.6 (3)
C13—N4—H4	125.6	C11—C10—C9	131.9 (3)
C11—N4—H4	125.6	N4—C11—C10	105.0 (3)
C1—O1—Mg1	118.6 (2)	N4—C11—C12	122.6 (3)
С4—О3—Н3	109.5	C10-C11-C12	132.3 (3)
C9—O5—Mg1	117.5 (2)	O8—C12—O7	123.4 (3)
С12—О7—Н7	109.5	O8—C12—C11	120.1 (3)
Mg1—O9—H9C	119.2	O7—C12—C11	116.5 (3)
Mg1—O9—H9D	130.5	N3—C13—N4	110.1 (3)
H9C—O9—H9D	108.5	N3—C13—C14'	125.5 (9)
Mg1-010-H10C	107.2	N4—C13—C14'	121.5 (9)
Mg1	140.1	N3—C13—C14	125.3 (7)
H10C-O10-H10D	108.2	N4—C13—C14	124.0 (7)
H11C—O11—H11D	108.6	C13—C14—C15	110.3 (9)
H12C—O12—H12D	108.7	C13—C14—H14A	109.6
H13C—O13—H13D	107.8	C15-C14-H14A	109.6
H14G—O14—H14H	108.8	C13—C14—H14B	109.6
O1—C1—O2	125.2 (3)	C15-C14-H14B	109.6
O1—C1—C2	116.1 (3)	H14A—C14—H14B	108.1
O2—C1—C2	118.6 (3)	C16-C15-C14	113.1 (11)
N1—C2—C3	110.1 (3)	C16—C15—H15A	109.0
N1—C2—C1	118.1 (3)	C14—C15—H15A	109.0
C3—C2—C1	131.7 (3)	C16—C15—H15B	109.0
N2—C3—C2	104.8 (3)	C14—C15—H15B	109.0
N2-C3-C4	121.6 (3)	H15A—C15—H15B	107.8
C2—C3—C4	133.5 (3)	C13—C14'—C15'	113.6 (16)

O4—C4—O3	121.5 (3)	C13—C14'—H14C	108.9
O4—C4—C3	121.4 (3)	C15'—C14'—H14C	108.9
O3—C4—C3	117.1 (3)	C13—C14'—H14D	108.9
N1—C5—N2	110.3 (3)	C15'—C14'—H14D	108.9
N1—C5—C6	124.3 (5)	H14C—C14'—H14D	107.7
N2—C5—C6	125.0 (5)	C16'—C15'—C14'	111 (2)
N1—C5—C6'	126.9 (12)	C16'—C15'—H15C	109.3
N2—C5—C6'	118.1 (12)	C14'—C15'—H15C	109.3
C5—C6—C7	110.8 (7)	C16'—C15'—H15D	109.3
С5—С6—Н6А	109.5	C14'—C15'—H15D	109.3
С7—С6—Н6А	109.5	H15C—C15'—H15D	108.0
С5—С6—Н6В	109.5	C15'—C16'—H16D	109.5
С7—С6—Н6В	109.5	С15'—С16'—Н16Е	109.5
Н6А—С6—Н6В	108.1	H16D—C16'—H16E	109.5
C6—C7—C8	109.9 (6)	C15'—C16'—H16F	109.5
С6—С7—Н7А	109.7	H16D—C16'—H16F	109.5
С8—С7—Н7А	109.7	H16E—C16'—H16F	109.5
С6—С7—Н7В	109.7		
010 - Mg1 - N1 - C5	79 7 (4)	C2-N1-C5-C6'	-1562(14)
$\Omega_1 - Mg_1 - N_1 - C_5$	174.6(4)	$M_{g1} = N_{1} = C_{5} = C_{6}$	26.8(15)
01 - Mg1 - N1 - C5	-154(4)	Mg1 = N1 = C5 = C0 C3 = N2 = C5 = N1	10(4)
$N_3 - M_3 - N_1 - C_5$	-92.2(4)	$C_3 = N_2 = C_5 = C_6$	-1721(6)
$\frac{10}{10} \frac{10}{10} 10$	-97.2(4)	$C_3 = N_2 = C_5 = C_6'$	172.1(0) 158 3 (13)
$\Omega_1 - Mg_1 - N_1 - C_2$	-2.28(19)	$N_1 - C_5 - C_6 - C_7$	97.0(7)
05 - Mg1 - N1 - C2	167.7(2)	N2-C5-C6-C7	-90.8 (8)
$N_3 M_{g1} N_1 C_2$	90.9(2)	$N_2 = C_3 = C_6 = C_7$	-8(3)
$M_3 = M_3 = M_1 = C_2$	90.9 (2) 81.6 (4)	$C_{0} = C_{0} = C_{0} = C_{0}$	-173.2(6)
01 - Mg1 - N3 - C13	-11.7(4)	$N_1 - C_5 - C_6' - C_7'$	-100.8(18)
05 Mg1 $N3$ $C13$	11.7(4)	N2-C5-C6'-C7'	106.1(17)
$N_1 - M_2 - N_3 - C_{13}$	-891(4)	12 - 25 - 26 - 27	-6.8(19)
$N_{1} = M_{g1} = N_{3} = C_{13}$	-87.2(2)	$C_{0} = C_{0} = C_{0} = C_{0}$	-70(2)
0^{-1} Mg1 $- N^{-1}$ 0^{-1}	179 55 (19)	$M_{g1} = 05 = 00 = 000$	-174.7(2)
01 - Mg1 - N3 - C10	5 30 (19)	Mg1 = 05 = 00	53(4)
$N_1 M_{g1} N_3 C_{10}$	5.50(17)	Mg1 = 05 = 05 = 010	-0.2(3)
09-Mg1-01-C1	-179.6(2)	M_{g1} N3 $-C_{10}$ $-C_{11}$	173.0(2)
$0^{-10} - Mg^{-1} - 0^{-1} - 0^{-1}$	88.9 (2)	$Mg_{1} = N_{3} = C_{10} = C_{11}$	-177.8(3)
05 - Mg1 - 01 - C1	-59.6(6)	$M_{g1} = N_{3} = C_{10} = C_{9}$	-16(3)
$M_{g1} = 01 = 01$	39.0(0)	Mg1 = N3 = C10 = C9	-0.1(4)
$N_1 = Mg_1 = O_1 = C_1$	-90.5(2)	05 - 05 - 05 - 05 - 05 - 05 - 05 - 05 -	180.0(3)
M_{3} M_{3	-69.3(2)	05 - 00 - 010 - 011	-177 1 (2)
$0_{10} \text{ Mg1} = 0_{10} \text{ C}^{9}$	174.8(2)	05 - 05 - 010 - 011	177.1(3)
$\Omega_1 = M_{g1} = \Omega_2 = \Omega_3$	-367(6)	$C_{13} = N_{14} = C_{11} = C_{10}$	-0.3(3)
$M_{g1} = 05 = 09$	-97.1(2)	$C_{13} = N_{4} = C_{11} = C_{10}$	178 3 (3)
$N_1 = M_2 = 0.5 = 0.0$	-5.0(2)	$N_{1}^{2} = N_{1}^{2} = 0$	178.3(3)
$M_{\sigma 1} = 01 = 01 = 02$	3.3(2)	$N_{3} = C_{10} = C_{11} = N_{4}$	1775(3)
$M_{\sigma}1 = 01 = 01 = 02$	-22(4)	N_{3} C_{10} C_{11} C_{12}	-178 1 (3)
$101g_1 - 01 - 01 - 02$	2.2(4)	C9 - C10 - C11 - C12	-0.9(6)
$M_{0} = N_{1} = C_{2} = C_{3}^{2}$	1.2(7)	$N_{-11-12-08}$	0.5(0)
$101g_1 - 101 - 02 - 03$	-1761(2)	10 - 011 - 012 - 00	178 4 (3)
C_{3}	1/0.1 (3)	10 - 011 - 012 - 00	1/0.4(3)

Mg1—N1—C2—C1	2.0 (3)	N4-C11-C12-O7	-179.3 (3)
01-C1-C2-N1	0.0 (4)	C10-C11-C12-O7	-1.1 (5)
02-C1-C2-N1	180.0 (3)	C10—N3—C13—N4	0.0 (4)
O1—C1—C2—C3	-176.7 (3)	Mg1—N3—C13—N4	-169.0 (3)
O2—C1—C2—C3	3.4 (5)	C10—N3—C13—C14'	-161.0 (8)
C5—N2—C3—C2	-0.2 (4)	Mg1—N3—C13—C14'	29.9 (9)
C5—N2—C3—C4	177.5 (3)	C10—N3—C13—C14	171.5 (7)
N1-C2-C3-N2	-0.6 (3)	Mg1—N3—C13—C14	2.5 (8)
C1—C2—C3—N2	176.2 (3)	C11—N4—C13—N3	0.2 (4)
N1-C2-C3-C4	-178.0 (3)	C11—N4—C13—C14'	162.1 (8)
C1—C2—C3—C4	-1.1 (6)	C11—N4—C13—C14	-171.5 (7)
N2-C3-C4-O4	0.9 (5)	N3-C13-C14-C15	122.3 (10)
C2—C3—C4—O4	177.9 (3)	N4-C13-C14-C15	-67.3 (11)
N2-C3-C4-O3	-178.4 (3)	C14'-C13-C14-C15	24 (3)
C2—C3—C4—O3	-1.4 (6)	C13—C14—C15—C16	-63.5 (15)
C2—N1—C5—N2	-1.4 (4)	N3-C13-C14'-C15'	81.0 (19)
Mg1—N1—C5—N2	-178.4 (3)	N4—C13—C14'—C15'	-78.0 (18)
C2—N1—C5—C6	171.8 (6)	C14—C13—C14'—C15'	179 (5)
Mg1—N1—C5—C6	-5.2 (8)	C13—C14'—C15'—C16'	-173.1 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2…O12	0.86	1.89	2.745 (4)	170
N4—H4…O13	0.86	1.91	2.737 (4)	162
O3—H3…O2	0.82	1.70	2.511 (3)	173
O7—H7…O6	0.82	1.65	2.461 (3)	172
09—H9C···08 ⁱ	0.85	1.88	2.732 (3)	177
O9—H9D…O11 ⁱⁱ	0.85	1.83	2.678 (4)	176
O10—H10C…O4 ⁱⁱⁱ	0.85	1.94	2.787 (3)	174
O10—H10D…O8 ^{iv}	0.85	2.06	2.905 (3)	174
O11—H11C···O2 ^v	0.85	1.95	2.794 (3)	172
011—H11D····O5 ^{vi}	0.85	2.05	2.893 (3)	172
012—H12C…O7 ^{vi}	0.85	2.05	2.888 (4)	167
O12—H12D…O14 ^v	0.85	1.84	2.672 (6)	167
O13—H13C…O14	0.85	1.85	2.643 (6)	156
O13—H13D···O11 ^{vii}	0.85	2.07	2.869 (5)	156
O14—H14G…O1 ^{viii}	0.85	2.00	2.816 (5)	162
O14—H14H···O1 ^{ix}	0.85	1.98	2.799 (5)	162

Symmetry codes: (i) -x, -y+1, -z+2; (ii) x, y-1, z+1; (iii) -x+1, -y, -z+1; (iv) x, y-1, z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+1, -z+1; (vii) x, y, z+1; (viii) x, y+1, z; (ix) -x+1, -y+1, -z+2.

014

Fig. 2